Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth.

نویسندگان

  • Julia Sämann
  • Jan Hegermann
  • Erika von Gromoff
  • Stefan Eimer
  • Ralf Baumeister
  • Enrico Schmidt
چکیده

Mutations in two genes encoding the putative kinases LRRK2 and PINK1 have been associated with inherited variants of Parkinson disease. The physiological role of both proteins is not known at present, but studies in model organisms have linked their mutants to distinct aspects of mitochondrial dysfunction, increased vulnerability to oxidative and endoplasmic reticulum stress, and intracellular protein sorting. Here, we show that a mutation in the Caenorhabditits elegans homologue of the PTEN-induced kinase pink-1 gene resulted in reduced mitochondrial cristae length and increased paraquat sensitivity of the nematode. Moreover, the mutants also displayed defects in axonal outgrowth of a pair of canal-associated neurons. We demonstrate that in the absence of lrk-1, the C. elegans homologue of human LRRK2, all phenotypic aspects of pink-1 loss-of-function mutants were suppressed. Conversely, the hypersensitivity of lrk-1 mutant animals to the endoplasmic reticulum stressor tunicamycin was reduced in a pink-1 mutant background. These results provide the first evidence of an antagonistic role of PINK-1 and LRK-1. Due to the similarity of the C. elegans proteins to human LRRK2 and PINK1, we suggest a common role of both factors in cellular functions including stress response and regulation of neurite outgrowth. This study might help to link pink-1/PINK1 and lrk-1/LRRK2 function to the pathological processes resulting from Parkinson disease-related mutants in both genes, the first manifestations of which are cytoskeletal defects in affected neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Effects of Different Concentrations of Morphine on Staurosporine-Induced Neurite Outgrowth in Pc12 Cells

Purpose: The present study was conducted to evaluate the effect of different concentrations of morphine on staurosporine-induced neurite outgrowth in PC12 cells. Materials and Methods: PC12 cells were cultured in RPMI1640 culture medium supplemented with 0.2% BSA. Cells were divided into three groups; Ι, ΙΙ and ΙΙΙ, culture in the presence of 50, 100 and 214 nM staurosporine respectively. In ea...

متن کامل

Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans.

Wnt proteins regulate axonal outgrowth along the anterior-posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled rece...

متن کامل

A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans

One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the...

متن کامل

C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons

During development, multiple environmental cues, e.g., growth factors, cell adhesion molecules, etc., interact to influence the pattern of outgrowth of axons and dendrites in a cell-specific fashion. As a result, individual neurons may receive similar signals, but make unique choices, leading to distinct wiring within the nervous system. C. elegans has been useful in identifying molecular cues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 24  شماره 

صفحات  -

تاریخ انتشار 2009